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Introduction: 

 

Dinghy sailing is a water sport in which the wind is used to propel a small boat. Downwind 

sailing makes sense, air molecules hitting the sail exert a net force upon it accelerating the 

boat up to the true wind speed at which point the sail will exert a braking force as collisions 

occur on the other side of it. However, since the early days of marine navigation, boat designs 

have made it possible to sail upwind as well. 

 

As part of the school sailing team, I 

have experienced upwind sailing and I 

know that the point of sail (the angle 

to the wind) can affect the boat speed. 

Additionally, further research, reading 

Frank Bethwaite’s, “High 

Performance Sailing”, has elucidated 

the physics behind how modern 

dinghies work.  

 

 

The sail of a dinghy is shaped like and acts as an aerofoil generating lift to propel the boat. 

The lift generated is always perpendicular to the apparent wind (the velocity of air molecules 

meeting the aerofoil) but the effect of the hydrofoils on the boat (daggerboard & rudder) 

which reduce sideways drift, mean that only the component of the lift force in the direction of 

travel of the boat needs to be considered. 

 

Figure 1 
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Objectives 

 

This investigation will produce a mathematical model to determine the optimal point of sail 

to Reach an Upwind Mark in a Dinghy. It will also look at how this optimal point of sail 

depends on the windspeed and factors affecting drag or lift. 

 

Assumptions 

 

To simplify the task of working out the effect of point of sail on upwind boat speed, some 

assumptions have been made to eliminate variables. It is assumed that the boat will not drift 

sideways by a noticeable amount and so this will be altogether ignored. The drag coefficient 

will remain constant in each calculation whereas many boats will have a decreasing drag 

coefficient as they can plane upwind (planing is where the angle of attack of the boats hull 

creates lift raising the boat out of the water and decreasing the area upon which drag can act). 

It will also be assumed that the boat has been kept flat by the crew and that the sail is 

perfectly trimmed. 

 

Hypothesis  

 

Based on my personal experience sailing a variety of different boats, the optimal upwind 

point of sail is about 30-40 degrees from the wind. I think the lift constant/drag constant ratio 

for a particular boat will have an appreciable effect since different types of boat have varying 

abilities to sail upwind. I expect the boat velocity will not be directly proportional to true 

windspeed and so the true windspeed is expected to have some effect on the optimum angle. 

 

 

Maths behind wind 

 

Wind velocity is relative. An observer stationary relative to the earth experiences the true 

wind velocity, a boat moving at any velocity on the water will experience the apparent wind, 

the true wind velocity minus the boat velocity.  In this way, a boat moving upwind will 

experience a higher apparent wind than a boat moving downwind in the same true wind. It 
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also explains how boats can sail faster than the wind: they only sail faster than the true wind, 

the apparent wind may be much higher. 

 

Lift 

 

Lift is an important physical force and is proportional to the square of the speed. The shape of 

the sail forces an area of lower pressure to form over the top surface of the sail and the 

pressure gradient between the top and bottom of the aerofoil creates an upwards force called 

lift perpendicular to the flow of air molecules over the sail. In contrast to an aeroplanes wing 

(which also produces lift in this way), in the case of a dinghy sail (when the dinghy is level), 

the lift is parallel to the water’s surface. 

 

Constructing a formula 

 

In this section, the different forces & velocities on a boat will be considered, resolved, and 

then built into an equation to find the terminal velocity of the boat at a given angle in given 

wind conditions. The approach I take to this problem will use a computer to approximate the 

values and see whether the trend is largely impacted by the ratio between drag and lift 

coefficients.  

 

In this model, the boat will start at rest but will be pointing in a fixed angle, 𝜃 which will be 

represented by the vector 𝐵#! of magnitude 1. 

Figure 2 

Figure 3 
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𝐵#! = %
sin	(𝜃)
cos	(𝜃)
0

/ 

The true wind will have a constant velocity 𝑉#", in this example it will be 18 knots. For 

simplicity it will always act along the y axis in a negative direction, it was modelled this way 

as it eliminated the direction of the wind as a factor in calculations. 

 

𝑉#" = %
0
−18
0
/ 

 

 

The driving force for the boat must be considered: the apparent 

wind. The true wind, 𝑉#", the wind which a stationary observer 

would experience is used as the frame of reference and is shown 

coming vertically downwards. This velocity will be independent 

so that different wind conditions can be evaluated. However, a 

sailing boat is rarely stationary and as such the boat’s velocity, 

𝑉##, must be accounted for in the velocity of the apparent wind, 

𝑉#$ (the direction and magnitude of the air running over the sails 

shown in Figure 4). 

 

𝑉#$ = 𝑉#" − 𝑉## 

 

Next, the lift is calculated from the equation below. Since the values of 𝜌	(air density), 𝐴 (sail 

area) and 𝐶% (lift coefficient) are constants and 𝐶% is unknown (but could be experimentally 

determined), the equation can be simplified with a single 

constant, 𝐾% to reflect this. 

𝐿 = 	
𝜌9𝑉#$9

&𝐴𝐶%
2 	 

 

𝐿 = 𝐾%9𝑉#$9
& 

 

Figure 4 
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However, this yields a scalar product for L. To get the direction of the lift, we use the 

knowledge that a sail produces lift at a right angle to the direction of airflow. With this 

knowledge, we can create a new vector in this direction by the cross product of 𝑉#$ and 𝑈<↑ (a 

unit vector pointing straight up out of the plane) which produces a vector at a right angle to 

𝑉#$  with the same magnitude. Dividing this vector by 9𝑉#$9 creates a unit vector in the 

direction of the lift. Multiplying this new unit vector by 𝐿 (the magnitude of the lift) gives the 

vector for lift, 𝜉>. 

𝑈<↑ = %
0
0
1
/ 

 

𝜉> =
?𝑉#$ × 𝑈<↑A𝐿

9𝑉#$9
 

 

If the lift alone determined the course of the boat, it would be impossible to go upwind at all 

since the boat would drift sideways in the direction of the lift provided by the sail. However, 

the boat’s foils: the daggerboard and rudder, prevent the boat from drifting and mean only 𝑇#  

(thrust), the component of 𝜉> which is colinear with 𝐵#! is considered. This is calculated as: 

 

𝑇# = 𝐵#!9𝜉>9cos(𝜙) 

 

where 𝜙 is the angle between the lift and the boat bearing.  

Knowing both the value of 𝐵#! and 𝜉>, the angle can be calculated as:  

Figure 5 



 6 

 

𝜙 = 𝑐𝑜𝑠()(
𝜉> ∙ 𝐵#!
9𝜉>99𝐵#!9

) 

 

Hence the force 𝑇#  can be expressed by multiplying the unit vector 𝐵#! by the calculated 

magnitude of the force: 

 

𝑇# = 	𝐵#!9𝜉>9
𝜉> ∙ 𝐵#!
9𝜉>99𝐵#!9

 

 

The only other force which will be considered is hydrodynamic drag, although there will also 

be aerodynamic drag it will be small in comparison to the effect of the water since water is 

denser. The equation for this force is shown and knowing that it opposes the movement of the 

boat its direction can be calculated using 𝐵#! .	The magnitude can be determined in a similar 

manner to the lift using a drag constant 𝐾*	to replace the constants 𝜌+ 	(water density), 𝐴, 

(hull area) and 𝐶- (drag coefficient). 

 

𝐷 =
𝜌+9𝑉##9

&𝐴,𝐶-
2 	 

 

𝐷 = 𝐾*9𝑉##9
& 

 

𝐷< = −𝐵#!𝐷 

 

 

Now, the net force acting on the boat is found as the vector sum of the individual forces.  

 

𝑇# + 𝐷< = 𝐹#. 

 

Force is equal to mass times acceleration (mass will be set to 1 unless otherwise stated), 

hence, to find the acceleration of the boat at any point in time. 
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𝐹#.
𝑚 = 𝑎N 

 

At which point the new boat velocity can be defined as a recurrence relationship which can 

be iterated by a computer program to approximate the results: 

 

𝑉##. = 𝑉##.() + 𝑎N𝑡 

 

By substituting in previously defined variables, the equation can be expanded to show the 

values which must be defined to calculate the recurrence relation. 

 

 

𝑉"!" = 𝑉"!"#$ +
𝑡
𝑚

⎝

⎜⎜
⎛
*
sin	(𝜃)
cos	(𝜃)
0

5 67𝑉"% − 𝑉"!"#$7
&𝐾'

𝑈;↑ × (𝑉"% − 𝑉"!)
7𝑉"% − 𝑉"!7

6

⎝

⎜⎜
⎛7𝑉
"% − 𝑉"!7

&𝐾'
𝑈;↑ × (𝑉"% − 𝑉"!)
7𝑉"% − 𝑉"!7

∙ *
sin	(𝜃)
cos	(𝜃)
0

5

67𝑉"% − 𝑉"!7
&𝐾'

𝑈;↑ × (𝑉"% − 𝑉"!)
7𝑉"% − 𝑉"!7

6 >
sin	(𝜃)
cos	(𝜃)
0

>
⎠

⎟⎟
⎞

− *
sin	(𝜃)
cos	(𝜃)
0

5 7𝑉"!"#$7
&𝐾)

⎠

⎟⎟
⎞

 

 

Finding the algebraic infinite sum of this recurrence relation is beyond the scope of this 

investigation and so instead, the 300th term will be calculated programmatically (a point at 

which most sequences were found to plateau. 

 

 

Were it possible to find the infinite sum of this sequence, which is expected to converge for 

the range 𝜃 ∈ {ℤ, 0 ≤ 𝜃 ≤ 90}, the max speed must be found for a given angle. The upwind 

component of the windspeed can be calculated as a function of q. 

 

𝑢(𝜃) = 9𝑉##/(𝜃)9cos	(𝜃) 

 

With this function defined, the maximum point can be found from the point of the derivative 

where the gradient is 0. This can be used to find the angle q at which the upwind boat speed 

is greatest. 
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𝑑𝑢(𝜃)
𝑑𝜃 = 0 

 

 

Numerical analysis 

 

A computer program (contained in the index) was written, then employed to conduct an 

analysis based on numerical approximations to determine whether the functions modelled 

match what is observed. The program was used to generate the following graphs. (Figures 6, 

8-13) 

 
Figure 6 

Figure 7: Input	values:	𝐾0 = 	0.01, 𝐾* = 0.1, 9𝑉#"9 = 30,		Optimal	angle	generated:	𝜃 =

35°. 
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In a test of the code (Figure 6), the relationship was 

as expected with the boat velocity being small at 

low angles to the wind and increasing up to a point 

around 30-40°. In figure 6, a representative graph is 

shown for a lift constant of 0.01 and a drag constant 

of 0.1 in a true wind of 30 knots. In this initial 

simulation the maximum upwind velocity was 6.5 

knots at 36° to the wind. This matches what I 

expected based on my experience sailing and real 

world data from the Volvo Ocean Racer 60 boats in 

figure 7 (Sailboat speed versus sailing angle - 

Sailing Blog by NauticEd, 2022) Where the max 

upwind velocity was achieved between 35-40°. 

 

 

 

 

 

Since the lift constant and drag constant cannot be determined without experiments, exact 

values cannot be used. The extent to which these values impact the angle can be determined 

by studying their behaviour in a variety of conditions. Based on our knowledge of the drag 

constant is likely to be larger than the lift constant. This is because these constants are 

defined as a function of the density of their respective mediums. Air is 1/1000 as dense as 

water and this will make the largest contribution to the difference between the two constants. 

 

𝐾* =
𝜌+𝐴,𝐶-

2  

 

𝐾% =	
𝜌1𝐴2𝐶%
2  

 

Using representative values, It was found that the lift and drag constants did not change the 

results very much. Where 𝐾0 ≤ 𝐾*	and	1 ≥ 𝐾0 , 𝐾* > 0, maximum upwind velocity was 

Figure 7 
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found between 35-45° (shown in Figures 8 & 9). Values outside this range caused parts of the 

simulation to behave erratically as the program struggled to handle with extremely large or 

small numbers. 

 

 

 

 

Figure 8: Input values: 𝐾0 = 	0.0001, 𝐾* = 0.01, 9𝑉#"9 =

30,	Optimal	angle	generated:	𝜃 = 35°.  

 

Figure 9: Input	values:	𝐾0 = 0.000001, 𝐾* = 0.000001, 9𝑉#"9 =

30,	Optimal	angle	generated:	𝜃 = 45°. 

 

These results seemed reasonable so to test the extreme behaviours of the simulation the boat 

was given no drag by setting the drag constant to zero. We expect this to result in a much 

faster boat possibly accelerating indefinitely and since it will sail principally under its own 

apparent wind the angle to the true wind at which it most efficiently sails upwind is also 

expected to change becoming more effective at higher angles from the wind. The simulation 

of this scenario in figure 10 reflects these predictions although the total velocity decreases at 

angles close to 90° since not enough iterations have been performed for the boat to come to 

equilibrium velocity.  

 

Figure 7 Figure 6 
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Figure 8 

Figure 10: Input	values:	𝐾0 = 0.001, 𝐾* = 0, 9𝑉#"9 = 30,	Optimal	angle	generated:	𝜃 =

69°.   

 

 

Figure 11 shows the effect of setting the lift constant to zero: the velocity of the boat remains 

at zero for the duration of the simulation since with no lift there is no force to accelerate the 

boat. In reality, the boat would slowly start to drift backwards as the much smaller 

aerodynamic drag forces built up on the surfaces of the boat but since this force will be so 

small it does not need to be considered in practical applications of this simulation. 
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Figure 9 

Figure 11: Input	values:	𝐾0 = 0, 𝐾* = 0.01, 9𝑉#"9 =

30,	Optimal	angle	generated:		𝜃 = 	no	difference	with	variation	of	𝜃 

 

Another variable which has a large potential effect on the optimal point of sail is the 

windspeed. Using modified code, Figure 12 shows that as the windspeed increases it becomes 

more effective to sail at a smaller angle to the true wind. Once again, the points of sail 

remained in the range 35-45°. The plot is non-differentiable as the program only 

approximated the optimal angle to the wind to the closest 0.5° but it is still effective in 

showing the overall trend for a particular boat across a range of conditions. 
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Figure 10 

Figure 12: Input values: 𝐾0 = 0.0005, 𝐾* = 0.001 

 

Finally, the mass of the boat can be considered. The plot in figure 13 shows that a lighter boat 

can sail closer to the true wind given the same lift and drag constants. However, this does not 

fully reflect the advantages of having a higher boat mass such as the addition of a keel which 

can help keep the boat flat in high wind velocities and the fact that heavier boats will usually 

be larger with bigger sails (larger lift constant). The optimal point of sail is limited to the 

range 35-45°.  
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Figure 11 

Figure 13: Input	values:	𝐾0 = 0.0005, 𝐾* = 0.001, |𝑉"| = 30 

 

Under simulated conditions, the optimal sail angle of a dinghy will be restricted between 35° 

and 45° a result which matches the hypothesis as well as observational data. Boat designs and 

sailing conditions are variable and by measuring accurate hydrodynamic and aerodynamic 

data it would be possible to further optimise this simulation to make predictions about 

specific boats as well as predicting general trends. 

 

Evaluation 

 

Although the simulation has yet to produce results revolutionising everyday sailing, it does 

highlight some key trends which boat builders are already considering in their designs. The 

importance of increasing lift while reducing drag and boat mass have been known for 

centuries and the recent popularity of lightweight foiling boats including the International 

Moth (Figure 14) which has extremely low drag when it is lifted out of the water by 

specialised underwater wings shows how modern technology has allowed these principles to 

be taken to the extremes. 
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Figure 12 

 

While this investigation looked at boats as two-dimensional with perfect balance, boats have 

a heeling moment when going upwind (Figure 15) which makes the sails less effective at 

converting wind to lift as it reduces their profile. Taking this into account would increase the 

optimal angle to the wind since the amount of heel increases as you sail closer to the wind. 

Alternatively, assuming the crew have a high enough mass to keep the boat flat, there would 

be little effect on the current simulation. 

 

 
Figure 13 

 

The simulation assumes that the boat does not drift as it allows the lift component in that 

direction, parasitic drag, and aerodynamic drag to be ignored as well as eliminating the 
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efficacy of the centreboard from the equation. However, all boats will drift to some extent 

(Figure 16) and in a future simulation, this effect could be explored. Incorporating this would 

likely result in the optimal points of sail shifting closer to the true wind to compensate for 

drift. 

 

 

 
Figure 14 

 

Many boats are designed such that as they increase their speed they can hydroplane. Water is 

deflected downwards by the bottom pushing the hull up out of the water (Figure 17). This 

force would have the effect of reducing the drag constant since a lower surface area is 

immersed in water. As discussed, decreasing drag increases the optimal angle to the wind but 

since this effect only kicks in at certain velocities, it would be interesting to look at how the 

optimal point of sail changes as the boat accelerates. 
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Figure 15 

Conclusion 

 

In summary, even a relatively simple mathematical model of a dinghy contains too many 

variables to determine anything closer than a range of optimal points of sail. To calculate the 

exact optimal point of sail constant analysis must be performed as the boat is moving with 

wind data, acceleration and drift all being considered. To do all that intuitively is the skill of 

sailing. 
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""" 
Created on Wed Oct 27 02:06:08 2021 
 
@author: Henry Hollingworth 
""" 
 
from matplotlib import pyplot as plt     
from matplotlib import patches as mpatches 
from numpy import array 
import math 
import numpy as np 
 
def absoluteval(a): 
    hyp = math.sqrt(a[0]**2 + a[1]**2) 
    return hyp 
 
def lift(apparent_wind, boat_bearing, up, lift_coefficient): 
    lift = ((absoluteval(apparent_wind)**2)*lift_coefficient) 
    vector_lift = lift*(np.cross((-1*apparent_wind), up)/absoluteval(apparent_wind)) 
    thrust_force = boat_bearing*absoluteval(vector_lift)*vector_lift.dot(boat_bearing)/ 
(absoluteval(vector_lift)*absoluteval(boat_bearing)) 
    return thrust_force 
 
def drag(boat_velocity, drag_coeffecient, boat_bearing): 
    drag= -1*((absoluteval(boat_velocity)**2)*drag_coeffecient) 
    dragv= drag*boat_bearing 
    return dragv 
     
def acceleration(FD,FL,boat_mass): 
    FR=FL+FD 
    a=FR/boat_mass 
    return a 
 
def newspeed(acceleration,boat_velocity,time_period): 
    newv=boat_velocity+acceleration*time_period 
    return newv 
     
lift_coefficient = 0.001 
drag_coefficient = 0.1 
boat_mass=1 
up = array([0,0,1]) 
true_wind = array([0, -10, 0]) 
time_period=1 
 
x=[] 
y=[] 
z=[] 
   
for j in range(90): 
    boat_velocity=array([0,0,0]) 
    FD=0 
    FL=0 
    time=0 
    boat_bearing=array([math.sin(math.radians(j)),math.cos(math.radians(j)),0]) 
     
    for i in range(300): 
        apparent_wind = true_wind - boat_velocity 
         
        FL=lift(apparent_wind, boat_bearing, up, lift_coefficient) 
        FD=drag(boat_velocity, drag_coefficient, boat_bearing) 
        boat_velocity=newspeed(acceleration(FD,FL,boat_mass), boat_velocity, time_period) 
        time = time+time_period 
         
    x.append(j) 
    y.append(boat_velocity[1]) 
    z.append(absoluteval(boat_velocity))  
 
print(y.index(np.max(y)),np.max(y)) 
plt.title('The Effect of Point of Sail on Upwind Boatspeed') 
plt.xlabel('Angle to the Wind/°') 
plt.ylabel('Velocity/knots') 
red_patch = mpatches.Patch(color='red', label='Total Velocity') 
green_patch = mpatches.Patch(color='green', label='Upwind Velocity') 
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73 
74 
75 
76 

plt.legend(handles=[red_patch,green_patch]) 
 
plt.plot(x,y, c='g',) 
plt.plot(x,z, c='r') 

 


